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Abstract

This paper presents a parallel algorithm for the

solution of the generalized eigenproblem in lin-

ear elastic finite element analysis, [K][ff] =

[M][_][O], where: [K] and [M] are of order N,

and [f2] is of order q. The parallel algorithm
is based on a completely connected parallel ar-

chitecture in which each processor is allowed to

communicate with all other processors. The al-

gorithm has been successfully implemented on

a tightly coupled multiple-instruction-multiple-

data (MIMD) parallel processing computer, Cray
X-MP. A finite element model is divided into m

domains each of which is assumed to process n

elements. Each domain is then assigned to a pro-

cessor, or to a logical processor (task) if tim num-

ber of domains exceeds the number of physical

processors. The macrotasking library routines

are used in mapping each domain to a user task.

Computational speed-up and efficiency are used

to determine the effectiveness of the algorithm.
The effect of the number of domains, the number

of degrees-of-freedom located along the global
fronts and the dimension of the subspace on the

performance of the algorithm are investigated.

For a 64-element rectangular plate, speed-ups

of 1.86, 3.13, 3.18 and 3.61 are achieved on two,

four, six and eight processors, respectively.

Nomenclature

[B]t

[B]rr

[lq

right-hand side at the I th iteration

= [M][V]

assembled global front right-hand
sides

stiffness matrix of order N.N
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[M]

[M]_

[M]"
N

q

[Q]

[v];+,

[V]rr

A
[a]

[,i,]

domain subspace stiffness matrix

subspace stiffness matrix of order

q.q

mass matrix of order N.N

domain subspace mass matrix

subspace mass matrix of order q.q

total number of degrees-of-
freedom of system

dimension of the subspace < N

eigenvectors of the auxiliary eigen-

problem

eigenvectors obtained at the I th it-
eration

unknown variables on global front

over-relaxation factor

eigenvalues of required subspace of

order q.q

eigenvectors of required subspace

of order N.q

Introduction

Large finite element models used in the analysis
and design of complex structures are not uncom-

mon and usually require enormous amounts of

computing time to solve the generalized eigen-

problem. As a result, the capabilities of sequen-

tial computers are quickly reaching their ultimate

peaks and efficient parallel algorithms must be

investigated to meet these computing needs.

A major advancement in computer hard-

ware based upon the unique architecture of par-

allel processing has the potential to decrease exe-

cution time by several orders of magnitude. Ilow-
ever in order to successfully improve the perfor-

mance, one must select and develop numerical

processes that take advantage of the parallel ar-
chitecture of this new generation of computers.

This paper presents the development, description
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and results of a new parallel numerical algorithm

using a multi-frontal subspace method to deter-
mine the natural frequencies and mode shapes of

large structures.

Numerical Techniques

The generalized eigenproblem for a structural

system is defined as:

[K][+] = [M][¢][_] (1)

in which [K] and [M] are symmetric, [¢] is a
modal matrix where each column is an eigen-

vector and [f_] is a diagonal matrix containing

eigenvalues. For the generalized eigenproblem
described in Eq. 1, the eigenvalues are real and

positive and the eigenvectors are orthogonal with

respect to [K] and [M]. The three most time con-

suming procedures in the solution of large eigen-

problems are the creation of element stiffness and

mass matrices, the solution of linear simultaneous

equations and the extraction of eigenpairs. The

efficiency and robustness of the frontal method I
for the solution of linear simultaneous equations

and the modified subspace method 2 for the ex-

traction of the least dominant eigenpairs, have

prompted the authors to incorporate them in the
concurrent solution of large eigenproblems.

The classical subspace method is reported

to provide an efficient algorithm for the solu-

tion of large problems in parallel and sequen-

tial processing 2'4. The rate of convergence of
the modified subspace method used in this pa-

per is faster by an average of 33% compared to

the classical subspace method 2. There are cer-

tain advantages in using the multi-frontal solu-
tion method in parallel processing 5. First, since

the bandwidth in the frontal solution depends

on the numbering of elements, there is no need
to renumber the nodes within each domain to

minimize the bandwidth of the submatrices of

the domain. In addition, the element numbering
scheme for both sequential and parallel solutions

may be left unchanged, thereby forgoing prepro-

cessing of the finite element for parallel execu-
tion. Second, load balancing is dependent on the
frontwidth and the number of elements in each

domain. Load balancing is therefore relatively

easier to achieve using the multi-frontal solution
method.

pa_'allel Architecture

A finite element model is divided into m domains

each of which consists of n elements (Fig. 1).

Each domain is then assigned to a physical pro-

cessor, or to a logical processor (task) if the num-
ber of domains exceeds the number of physical

processors. The macrotasking library routines 6

are used in mapping each domain to a user task.

The parallel algorithm is based on a completely

connected parallel architecture (Fig. 2) in which

each processor is allowed to communicate with

all other processors.

Parallel Algorithm

Fig. 3 shows the logical structure of the paral-

lel algorithm. Each processor creates the stiff-
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ness and mass matrices, [K] e and [M] e, of the

elements located within its assigned domain,

and calculate the corresponding right-hand sides,

[B]_. Random numbers are used to generate
N.q starting eigenvectors [V]_ . Each processor

then assembles the element matrices, [K] _ and

[B]_, and simultaneously eliminates the equa-
tions corresponding to the degrees_of-freedom

not located along the global fronts (boundaries):

[K]'[V]_I = [BI_ (2)

where: i .i[K] ,[V]l+l and [B]_ are the stiffness
matrix, approximate eigenvectors and the corre-

sponding right-hand sides, respectively, of the i th

domain just after the assembly of matrices and
before the elimination of the degrees_f-freedom

during the 1_h iteration. Although Eq. 2 is never
formed in the frontal solution, it is given here to

illustrate the algorithm in a more concise man-
ner. At the conclusion of the assembly and elim-

ination steps, two matrix equations are obtained
for the i th domain in which the subscript 'F'

refers to the degrees-of-freedom located along

the global fronts and the subscript 'd' refers to

all other degrees-of-freedom within the domain

(Fig. 1):

[Uld[V] + [Kld[Vl*d= [B]d (3)
[KIF[V];- = [B]F (4)

A synchronization point is established at

this stage in which each processor waits for all

other processors to calculate and communicate

[K]F and [B]F, and to assemble the global front
matrices [K]FF and [B]FF. The solution for

the degrees-of-freedom located along the global

fronts, [V]rF, is obtained and the process of
back-substitution within each domain proceeds

concurrently until [V]_._I is calculated at the Ith
iteration for each element. Concurrent process-

ing continues to calculate the projection of the
stiffness and mass matrices onto the required

subspace, [h']_ i and [M]_ i of order q.q for the
i 'h domain. This is the second and last syn-

chronization point in tile parallel algorithm at
which the contribution from all other domains

are required before proceeding to solve the aux-

iliary eigenproblem of tile modified subspace Ls,

[K]'[Q] = [M]*[Q][12]. The selection of the fac-
tor fit is documented 2's and will not be repeated
here. More accurate approximation of the eigen-

vectors [V]_ is obtained using:

[V]_+l _- [V]_-_I [QI (5)

The algorithm either terminates or continues to

iterate until a test of convergence is satisfied. In

this paper a tolerance level of 10 -7 is imposed on

the highest order eigenvalue in the subspace, wq2.

Analysis of Performance

To measure the success of the parallel algorithm

on the Cray X-MP/24 supercomputer, two mea-
sures are used:

7-, (> 1) (6)
Speed-up = SP =

SP
Efficiency = -- (_< 100%) (7)

rn

where: Tj is the time of sequential algorithm.

Tp is the time of parallel algorithm.
m is the number of processors used in

the parallel solution.
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A number of test runs were analyzed to ex-

amine the variables influencing the speed-up and

efficiency of the algorithm in a dedicated mode.

The following sections present the results ob-
tained from a number of example problems for

the 64--element rectangular plate with all edges

clamped.

Figure 4: 64-Element Plate, All Edges Clamped.
Number of Domains

These two measures are computed for a rect-

angular plate with 64 identical elements (Fig.

4). The plate is modelled using an isoparametric

square plate element of length 2.0 in; the element
consists of four corner nodes and four mid-side

nodes amounting to 16 degrees-of-freedom per

element. The plate properties are: Young's mod-

ulus is 1.0 psi, Poisson's ratio is 0.3, the mass

density is 1.0 lb sec2/in 4 and 1.0 in equaling

the thickness. The algorithm developed is tested

against a similar sequential algorithm: FEDA 9.

Table 1 shows the first eight eigenvalues for the

plate.

Ideal speed-up for the parallel algorithm should

be equivalent to the number of domains the finite
element model has been subdivided into. The

rectangular plate shown in Fig. 4 is tested to
determine the speed-up and efficiency on two,

four, six and eight processors. The decoupled

plates are shown in Fig. 5 to describe the global

fronts and element numbering layout. Favorable
results were obtained on the two and four proces-

sor models (Table 2). The six and eight processor

models showed performance degradation due to

the relatively high number of degrees-of-freedom

on the global front.

Table 1: Predicted Ei$envalues

Order

of

Eigenvalue

Parallel and

Sequential Solution

(Wol=10-r)

1 0.1171x10 -1

2 0.1306x10 -1

3 0.1569x10 -1

4 0.2017x10 -t

5 0.2731x10 -t

6 0.3814x10 -1

7 0.5401x10 -1

8 0.7662x10 -1

Table 2: Performance of Various Domains with q = 2

No. of

Processors

1

2

4

6

8

Figure

No.

4

5-a

5-b

5-c

5-d

Number of Speed-up Efficiency

Iterations (Tol= 10 -_ )

16 1.00 100%

16 1.86 93%

14 3.13 78%

16 3.18 53%

14 3.61 45%
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Table 3: Performance of Two Subspace Iterations

No. of Figure

Processors No.

1 4

2 5-a

4 5-b

6 5-c

8 5-d

Speed-up Efficiency

q=2

1.00 100%

1.68 84%

2.84 71%

2.88 48%

2.83 35%

The two-processor model (Fig. 5a) per-
formed very well with a speed-up of 1.86. When

comparing the results of Tables 2 and 3, the two-

domain model gains momentum as the number

of iterations increases. The global front has only

13 degrees-of-freedom which is the lowest pos-
sible number for the two domain model. This

is the only system where an accurate evaluation
of the communication links could be verified. It

was found that transmitting information from

one processor to another through common blocks
accumulated minimal overhead.

Table 2 also shows that the results for the

four-domain model in Fig. 5b benefited greatly
from a lower number of iterations in the paral-
lel solution. The number of iterations taken to

achieve tolerance plays a big part in determining

the overall speed-up of the algorithm. Difference

in roundoff error between the sequential and par-

allel solutions is suspected to be the reason for
the different number of iterations.

Subroutine Evaluation

To initially start the multitasking package a main

program was developed to set the synchroniza-

tion points and map out all domain processors.

The time taken to perform this task was calcu-
lated to be between 20 to 60 milliseconds, which

does not have a big impact on the total execution
time. At the first of three synchronization points

all input data is read into task one and passed to
the othcr tasks to avoid overhead due to single-

threaded I/O on the Cray computer. This causes

a 1.0 second delay until all processors can move

forward again. A description of the subroutines

used by parallel FEDA (pFEDA) is located in

Appendix A.

In DMATRON, the subroutine that deter-

mines the first and last appearance of all nodes

in its domain has a very low speed-up for all sizes
of domains. This subroutine takes about 2% of

the total execution time to complete. Some over-
head is accumulated in this subroutine but is not

critical to the total execution time. The creation

of element matrices, [K] e and [M] e, is the first

place where significant speed-up is achieved be-
cause the finite element model is substructured

into an equal number of elements in each task;

the individual tasks should have an ideal speed-

up of 2.0, 4.0, 6.0 and 8.0 for two, four, six and

eight processors in subroutine ESTIFF. Referring

to Table 4, the two, four and eight-domain struc-
tures show efficiencies of 89%, 90% and 90% for
subroutine ESTIFF which means some overhead

has been compiled at this point due to paral-

lel processing. In the unbalanced six-processor

model (Fig. 5c) the efficiency is only 80% as a
result of the extra elements in domains one and

six.

Table 4: Subroutine Speed-ups for q = 6

Number of Processors

Subroutine Two I Four I Six I Eight

DMATRON 1.27 1.96 2.13 2.40

ESTIFF 1.78 3.59 4.78 7.17

First Iteration

DFRONT 1.60 1.96 1.21 0.91

DCONDS 1.86 3.63 4.75 6.96

RELOAD 1.92 3.81 5.08 7.65

Second Iteration

DFRONT 1.83 2.55 2.37 2.34

DCONDS 1.86 3.64 4.81 6.97

RELOAD 1.92 3.84 5.06 7.64



Aftertheelementmatriceshavebeengener-
ated,theprogramisreadytobeginthesolution-
resolutionprocessto determinethenaturalfre-
quenciesofthesystem.Themostcriticalsubrou-
tineis DFRONTwherethemulti-frontaltech-
niqueis implementedalongwith the assembly
andeliminationof theglobalfront.. In addi-
tion,thesecondsynchronizationpointislocated
within thissubroutineto send/receivedataon
theinterfacematrices(Fig.3).

Number of Degrees-of-Freedomalong
Global Fronts:

Success of the parallel algorithm is depen-

dent upon the number of degrees_of-freedom on

the global front; as the number of domains in-

crease so does the number of degrees-of-freedom

on the global front. Subroutine DFRONT be-
haves progressively worse as the number of

degrees-of-freedom on the global front and do-
mains increase which can be seen in Table 4. For

example, in the two-domain problem (Fig. 5)

with 13 degrees-of-freedom on the global front

and 115 degrees-of-freedom remaining in each
domain, subroutine DFRONT in the first and

second iteration take up 19% of the total execu-

tion time. In contrast, the eight-domain problem

with 91 degrees-of-freedom on the global front

and 19 degrees-of-freedom remaining in each do-
main takes 64% of the total execution time. The

execution time of DFRONT in the first iteration

is always greater than that of the subsequent sub-
space iterations because of a lower number of cal-

culations that are required in subsequent itera-
tions.

The remaining two subroutines DCONDS

and RELOAD perform the calculations of the

modified subspace method. Some overhead is as-
sociated with these subroutines but overall their

speed-ups are consistent and performed very
well. Imbedded in DCONDS is the final synchro-

nization point to send/receive all domain sub-

space matrices.

In summary, the sources of overhead associ-

ated with pFEDA are:

1. Tile extra coding to implement parallel pro-

cessing.

.

.

4.

Input of data and the map of the pre-front
needed in the solution.

Communication links used to pass data.

Assembly and elimination of the global front
performed within each task.

5. Solution of the auxiliary eigenproblem.

Dimension of tile Subspace

The number of eigenvalues and mode shapes is

increased to determine its impact on the algo-

rithm. All factors are kept constant when using

the 64-element plate shown in Figs. 4 and 5 with

test runs limited to two subspace iterations. Dis-

played in Fig. 6 is the speed-up relative to the
increasing number of eigenvalues (q = 2, 4, 6, 8

and 10). It shows a steady increase in the speed-

up from 1.68 to 1.75 for the largest two subspace

dimensions even though the auxiliary eigenprob-

lem is solved sequentially. This increase in over-

all speed-up is the result of higher speed-ups at-
tained by subroutines DFRONT and RELOAD

which outweigh the lower speed-up of subrou-

tine DCONDS where the auxiliary eigenproblem

is solved. In conclusion, for larger finite element

problems increasing the subspace size adds no

extra overhead and shows a steady increase in

speed-up.

Conclusions

The parallel program described in this paper

was found to be an accurate and effective algo-

rithm to solve linear finite element eigenproblems

on the Cray X-MP computer and demonstrated
that speed-ups in execution time can be achieved

when compared to a similar sequential algorithm

(Fig. 7). In the course of this research, the fol-

lowing conclusions have emerged:

1. pFEDA takes advantage of the shared and

"private" memory on the MIMD Cray com-

puter while successfully using a completely
connected architecture to transmit informa-

tion from one processor to another.
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2. Communication links appear to be optimally

synchronized. Overhead due to data con-
tention and library routines calls are found

to be of minimal impact on the performance.

3. Performance for the creation of the stiffness

and mass matrices and the modified sub-

space method were extremely encouraging

and indicate the effectiveness of multitasking

environment on the Cray X-MP computer.

4. The major deficiency of pFEDA was the

elimination of the degrees-of-freedom on the

global front, as the domains increased so

did the degrees-of-freedom on the bound-
ary. The extra sequential calculations per-

formed by each task to handle the global

front lowered the speed-up and efficiency

significantly.

5. When subdividing a finite element model
into m domains one should choose the con-

figuration with the lowest possible degrees-

of-freedom on the global front for this will

increase speed-up and efficiency of the par-
allel solution.

6. Increasing the size of the subspace creates

no extra overhead even though the auxiliary
eigenproblem is solved sequentially.

7. Load balancing, i.e. assigning an equivalent

amount of work to each task by keeping the

number of elements and frontwidth equal in

all domains, is very important in the perfor-

mance of pFEDA.

8. Element numbering is an important aspect

in lowering the frontwidth for the frontal

technique.
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The data is checked for fatal or non-fatal

errors. This routine then determines the last

appearance of each node (pre-front). The

size of the global front is also calculated.

2. Subroutine ESTIFF:
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trices. It also creates the element initial

eigenvectors.

3. Subroutine DFRONT:
Assembles and eliminates the stiffness ma-

trix for the degrees-of-freedom in their last

appearance up to the global front. Af-
ter the global front is reached and boundry
interface matrices are transmitted to all

tasks, the global front can be assembled and
eliminated. Immediately afterward back-

substitution begins to calculate the unknown
variables within each domain.

4. Subroutine DCONDS:

Calculates the projection of [K] and [M]
onto the current subspace for each itera-
tion and communicates them to all other

user tasks. After this is completed , the

auxiliary eigenproblem is solved. Next, a
better M-orthonormalized approximation of

the required eigenvectors is constructed.
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element analysis, "_[_,I,] = [_, where: (K) and (M_ are of order N, and [_fl] is of order q. The parallel
algorithm is based on a_y-connected parallel architecture in which each processor is allowed to commu-

nicate with all other processors. The algorithm has been successfully implemented on a tightly coupled multiple--

instruction-multiple-data (MIMD) parallel processing computer, Cray X-MP. A finite element model is divided
into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor, or

to a logical processor (task) if the number of domains exceeds the number of physical processors. The macro- -

tasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency
are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of

degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the

algorithm are investigated. For a 64-element rectangular plate, speed-ups of 1.86, 3.13, 3.18 and 3.61 are
achieved on two, four, six and eight processors, respectively.
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